Логика - Страница 16


К оглавлению

16

Понимание имени как того, что имеет определенный объем и определенное содержание, широко распространено в логике. Нетрудно заметить, что это понимание существенно отличается от употребления понятия "имя" в обычном языке. Имя в обычном смысле — это всегда или почти всегда собственное имя, принадлежащее индивидуальному, единственному в своем роде предмету. Например, слово "Наполеон" является в обычном словоупотреблении типичным именем. Но уже выражения "победитель под Аустерлицем" и "побежденный под Ватерлоо" к именам обычно не относятся. Тем более не относятся к ним такие типичные с точки зрения логики имена, как "квадрат", "человек", "самый высокий человек" и т. п. Во всяком случае, если бы кто-то на вопрос о своем имени ответил: "Мое имя — человек", вряд ли такой ответ считался бы уместным. И даже ответ: "Мое имя — самый высокий человек в мире" — не показался бы удачным.

То, что логика заметно расширяет обычное употребление слова "имя", объясняется многими причинами, и прежде всего ее стремлением к предельной общности своих рассуждений.

Имена находятся в различных отношениях друг к другу. Между объемами двух произвольных имен, которые есть какой-то смысл сопоставлять друг с другом, имеет место одно и только одно из следующих отношений: равнозначность, пересечение, подчинение (два варианта) и исключение.

Равнозначными являются два имени, объемы которых полностью совпадают. Иными словами, равнозначные имена отсылают к одному и тому же классу предметов, но делают это разными способами.

Равнозначны, к примеру, имена "квадрат" и "равносторонний прямоугольник": каждый квадрат является равносторонним прямоугольником, и наоборот.

Равнозначность означает совпадение объемов двух имен, но не их содержаний. Например, объемы имен "сын" и "внук" совпадают (каждый сын есть чей-то внук и каждый внук — чей-то сын), но содержания их различны.

Отношения между объемами имен можно геометрически наглядно представить с помощью круговых схем. Они называются по имени математика XVIII в. Л.Эйлера "кругами Эйлера". Каждая точка круга представляет один предмет, входящий в объем рассматриваемого имени. Точки вне круга представляют предметы, не подпадающие под это имя.

Отношение между двумя равнозначными именами изображается в виде двух полностью совпадающих кругов.

Равнозначность

В отношении пересечения находятся два имени, объемы которых частично совпадают.

Пересекаются, в частности, объемы имен "летчик" и "космонавт": некоторые летчики являются космонавтами (они представлены заштрихованной частью кругов), есть летчики, не являющиеся космонавтами, и есть космонавты, не являющиеся летчиками.

Пересечение

В отношении подчинения находятся имена, объем одного из которых полностью входит в объем другого.

В отношении подчинения находятся, к примеру, имена "треугольник" и "прямоугольный треугольник": каждый прямоугольный треугольник является треугольником, но не каждый треугольник прямоугольный.

Подчинение

В этом же отношении находятся имена "дедушка" и "внук": каждый дедушка есть чей-то внук, но не каждый внук является дедушкой. "Внук" — подчиняющее имя, "дедушка" — подчиненное.

Если в отношении подчинения находятся общие имена, то подчиняющее имя называется родом, а подчиненное — видом. Имя "треугольник" есть род для вида "прямоугольный треугольник", а имя "внук" — род для вида "дедушка".

В отношении исключения находятся имена, объемы которых полностью исключают друг друга.

Исключают друг друга имена "трапеция" и "пятиугольник", "человек" и "планета", "белое" и "красное" и т. п.

Исключение

Можно выделить два вида исключения:

1. Исключающие объемы дополняют друг друга так, что в сумме дают весь объем рода, видами которого они являются. Имена, объемы которых исключают друг друга, исчерпывая объем родового понятия, называются противоречащими.

Противоречащими являются, например, имена "умелый" и "неумелый", "стойкий" и "нестойкий", "красивый" и "некрасивый" и т. п. Противоречат друг другу также имена "простое число" и "число, не являющееся простым", исчерпывающие объем родового имени "натуральное число", имена "красный" и "не являющийся красным", исчерпывающие объем родового имени "предмет, имеющий цвет", и т. п.

2. Исключающие имена составляют в сумме только часть объема того рода, видами которого они являются. Имена, объемы которых исключают друг друга, не исчерпывая объем родового имени, называются противоположными.

Противоречащие имена Противоположные имена

К противоположным относятся, в частности, имена "простое число" и "четное число", не исчерпывающие объема родового имени "натуральное число", имена "красный" и "белый", не исчерпывающие объема родового имени "предмет, имеющий цвет" и т. п.

16