Логика - Страница 40


К оглавлению

40

Интересно, что используя прием Евбулида, можно доказать и прямо противоположное утверждение, что "волосатых" людей нет и все являются лысыми.

Для этого достаточно начать с другого конца образованного нами ряда людей. Первым человеком будет в этом случае совершенно лысый. У каждого следующего в ряду будет всего на один волос больше, чем у предыдущего. Так что, если предыдущий — лысый, то и следующий за ним также лысый. Значит, каждый человек является лысым, включая, естественно, и последних в ряду, у которых на головах буйные шевелюры.

Здесь уже не просто рассогласование чувств и разума, а прямое противоречие в самом разуме. Удалось доказать с равной силой как то, что ни одного лысого нет, так и то, что все являются совершенно лысыми. И оба доказательства были проведены с помощью метода математической индукции, в безупречность которой мы верим со школьных лет и которая лежит в основании такой строгой и точной науки, как математика.

Парадокс "куча" строго аналогичен парадоксу "лысый". Одно зерно (один камень и т. п.) не образует кучи. Если n зерен не образуют кучи, то n+1 зерно не образуют кучи. Следовательно, никакое число зерен не может образовать кучи.

Продолжая тему возраста, начатую предыдущими примерами ("молодой человек", "человек среднего возраста"), можно было бы доказать теперь, что стариков вообще нет, а есть только младенцы. Правда, к последним относились бы и все те, кому сто лет и больше. С равным успехом удалось бы также показать, что всякий человек, в том числе и только что родившийся, является глубоким стариком.

Возможность всех этих и подобных им доказательств означает, что принцип математической индукции имеет строго ограниченную область приложения. Он не должен применяться, в частности, в рассуждениях об объектах, обозначаемых неточными, расплывчатыми именами.

Возникает, однако, вопрос: благодаря каким свойствам математических понятий парадоксы, подобные описанным, не могут появиться в математике? В чем состоит та особая жесткость математических объектов, которая дает возможность распространить на них математическую индукцию? Или, говоря иначе, какие именно объекты являются "математическими", подпадающими под действие принципа математической индукции?

Из этих вопросов можно сделать, в частности, вывод, что при обосновании математики принцип математической индукции не должен приниматься в качестве самоочевидного и исходного.

Оказывается в итоге, что древние парадоксы, касающиеся неточных имен, перекликаются с самыми современными спорами по поводу оснований математики.

Неточными являются не только эмпирические имена, подобные "дому", "куче", "старику" и т. д., но и многие теоретические имена, такие как "идеальный газ", "материальная точка" и т. д.

Характерная особенность неточных имен заключается в том, что с их помощью можно конструировать неразрешимые высказывания. Относительно таких высказываний невозможно решить, истинны они или нет, как, скажем, в случае высказываний: "Человек тридцати лет молод" и "Тридцать лет — это средний возраст".

Естественно, что наука стремится исключить неточные имена, как и содержащие их неразрешимые высказывания, из своего языка. Однако ей не всегда удается это сделать. Многие ее имена заимствованы из повседневного языка, модификация и уточнение их не всегда и не сразу приводят к успеху.

...

Неточными являются, в частности, обычные имена, связанные с измерением пространства и времени. На это впервые обратил внимание А.Эйнштейн. Он показал, что имена "одновременные события" и "настоящее время" не являются точными. Легко сказать, одновременны или нет события, происходящие в пределах восприятия человека. Установление же одновременности удаленных друг от друга событий требует синхронизации часов, сигналов. Содержание обычного понятия одновременности не определяет никакого метода, дающего хотя бы абстрактную возможность суждения об одновременности событий.

То, что имена в большинстве своем являются неточными, означает, что каждый язык, включая и язык любой научной теории, более или менее неточен. Сопоставление теории, сформулированной в таком языке, с реальными и эмпирически устанавливаемыми сущностями всегда обнаруживает определенное расхождение теоретической модели с реальным миром. Обычно это расхождение относят к проблематике, связанной с приложимостью теории, оно оказывается тем самым в известной мере завуалированным. Но это не означает, конечно, что расхождения нет.

Особенно остро стоит в этом плане вопрос о приложимости к эмпирической реальности наиболее абстрактных теорий — логических и математических.

...

Применительно к математике А.Эйнштейн выразил эту мысль так: "Поскольку математические предложения относятся к действительности, они не являются бесспорными, а поскольку они являются бесспорными, они не относятся к действительности". Анализируя понятие неточности, Б.Рассел пришел к заключению, что поскольку логика требует, чтобы используемые имена были точными, она применима не к реальному миру, а только к "воображаемому неземному существованию".

Эти мнения являются, конечно, крайними. Но они хорошо подчеркивают серьезность тех проблем, которые связаны с неточностью имен.

Иногда неточные имена, подобные "молодому", удается устранить. Как правило, это бывает в практических ситуациях, требующих однозначности и точности и не мирящихся с колебаниями.

Можно, во-первых, прибегнуть к соглашению и ввести вместо неопределенного имени новое имя со строго определенными границами.

40