Логика - Страница 54


К оглавлению

54
Но им без волненья внимать невозможно.

В общем случае туманность и темнота — неприятные, хотя зачастую и неизбежные спутники общения с помощью языка. От них желательно по мере возможности избавляться.

Но жанровые туманность и темнота имеют все права появляться в нужное время на удобной для этого сцене.

Глава 7. Логика высказываний

1. Логический закон

Логика высказываний является теорией тех логических связей высказываний, которые не зависят от внутреннего строения (структуры) простых высказываний.

Логика высказываний исходит из следующих двух допущений:

1. всякое высказывание является либо истинным либо ложным (принцип двузначности);

2. истинностное значение сложного высказывания зависит только от истинностных значений входящих в него простых высказываний и характера их связи.

На основе этих допущений ранее были даны строгие определения логических связок "и", "или", "если, то" и др. Эти определения формулировались в виде таблиц истинности и назывались табличными определениями связок. Соответственно, само построение логики высказываний, опирающееся на данные определения, называется табличным ее построением.

Согласно принятым определениям:

● конъюнкция истинна, когда оба входящих в нее высказывания истинны;

● дизъюнкция истинна, когда хотя бы одно из входящих в нее высказываний истинно;

● строгая дизъюнкция истинна, когда одно из входящих в нее высказываний истинно, а второе ложно;

● импликация истинна в трех случаях: ее основание и следствие истинны; основание ложно, а следствие истинно; и основание, и следствие ложны;

● эквивалентность истинна, когда два приравниваемых в ней высказывания оба истинны или оба ложны;

● отрицательное высказывание истинно, когда отрицаемое высказывание ложно, и наоборот.

С помощью таблиц истинности в случае любого сложного высказывания можно определить, при каких значениях истинности входящих в него простых высказываний это высказывание истинно, а при каких ложно.

Логика высказываний — это определенная совокупность формул, т. е. сложных высказываний, записанных на специально сконструированном искусственном языке. Язык логики высказываний включает:

1. неограниченное множество переменных: А, В, С…, А, В, С, представляющих высказывания;

2. особые символы для логических связок: & — "и", v — "или", V — "либо, либо", → — "если, то", ↔ — "если и только если", ~ — "неверно, что""

3. скобки, играющие роль знаков препинания обычного языка. Чтобы использовать меньшее количество скобок, условимся, что операция отрицания выполняется первой, затем идут конъюнкция и дизъюнкция, и только после этого импликация и эквивалентность.

Формулам логики высказываний, образованным из переменных и связок, в естественном языке соответствуют предложения. К примеру, если А есть высказывание "Сейчас день", В — высказывание "Сейчас светло" и С — высказывание "Сейчас холодно", то формула:

АВ v С, или со всеми скобками: v С)),

представляет высказывание "Если сейчас день, то сейчас светло или холодно". Формула:

В & СА, или ((В & С)А),

представляет высказывание "Если сейчас светло и холодно, то сейчас день". Формула:

— В → ~ А, или ((~ В)(~ А)),

представляет высказывание "Если неверно, что сейчас светло, то неверно, что сейчас день" и т. п. Подставляя вместо переменных другие конкретные (истинные или ложные) высказывания, получим другие переводы указанных формул на обычный язык.

Формула, которой не соответствует осмысленное предложение, построена неправильно.

Таковы, в частности, формулы:

), (& В), (A v ВС), (~ & ) и т. п.

Каждой формуле логики высказываний соответствует таблица истинности, показывающая, при каких подстановках конкретных высказываний в данную формулу она дает истинное сложное высказывание, а при каких ложное. Например, формула (~ В → ~ А) даст ложное высказывание, только если вместо В подставить ложное высказывание, а вместо А — истинное.

Всегда истинная формула логики высказываний, или тавтология, — это формула, дающая истинное высказывание при любых подстановках, в нее конкретных (т. е. истинных или ложных) высказываний.

Иными словами, внутренняя структура тавтологии гарантирует, что она всегда превратится в истинное высказывание, какими бы конкретными высказываниями мы ни заменяли входящие в нее переменные.

Всегда ложная формула, или логическое противоречие, всегда превращается влажное высказывание при подстановке конкретных высказываний вместо ее переменных.

Покажем для примера что формула:

(А — В)(~ В → ~ А)

является тавтологией. Для этого переберем варианты подстановок вместо переменных А и В конкретных высказываний. Таких вариантов, очевидно, четыре: оба подставляемых высказывания истинны, оба они ложны, первое из них истинно, а второе ложно, и первое ложно, а второе истинно.

В результирующей колонке таблицы встречается только значение "истинно", т. е. формула является всегда истинной.

Нетрудно убедиться, например, что формула:

& → А)

является всегда ложной, т. е. противоречием.

54