Логика - Страница 7


К оглавлению

7

Если есть первое, то есть второе; но второго нет; значит, нет первого. Посредством этой схемы от утверждения условного высказывания и отрицания его следствия осуществляется переход к отрицанию основания высказывания. Например: "Если наступает день, то становится светло; но сейчас не светло; следовательно, день не наступил". Иногда эту схему смешивают с логически некорректным движением мысли от отрицания основания условного высказывания к отрицанию его следствия: "Если есть первое, есть и второе; но первого нет; значит, нет и второго".

Если есть первое, то есть второе; следовательно, если нет второго, то нет и первого. Эта схема позволяет, используя отрицание, менять местами высказывания. К примеру, из высказывания "Если есть гром, есть также молния" получается высказывание "Если нет молнии, то нет и грома".

Есть по меньшей мере или первое или второе; но первого нет; значит, есть второе. Например: "Бывает день или ночь; сейчас ночи нет; следовательно, сейчас день".

Либо имеет место первое, либо второе; есть первое; значит, нет второго. Посредством этой схемы от утверждения двух взаимоисключающих альтернатив и установления того, какая из них присутствует, осуществляется переход к отрицанию другой альтернативы. Например: "Достоевский родился либо в Москве, либо в Петербурге; он родился в Москве; значит, неверно, что он родился в Петербурге". В американском вестерне "Хороший, плохой и злой" Бандит говорит: "Запомни, Однорукий, что мир делится на две части: тех, кто держит револьвер, и тех, кто копает. Револьвер сейчас у меня, так что бери лопату". Это рассуждение также опирается на рассматриваемую схему.

Неверно, что есть и первое, и второе; следовательно, нет первого или нет второго; Есть первое или есть второе; значит, неверно, что нет первого и нет второго. Эти и близкие им схемы позволяют переходить от утверждений с союзом "и" к утверждениям с союзом "или", и наоборот. Используя данные схемы, от утверждения "Неверно, что сегодня ветер и дождь" можно перейти к утверждению "Неверно, что сегодня ветер или неверно, что сегодня дождь" и от утверждения "Амундсен или Скотт был первым на Южном полюсе" перейти к утверждению "Неверно, что ни Амундсен, ни Скотт не является первым человеком, побывавшим на Южном полюсе".

Таковы некоторые схемы правильного рассуждения. В дальнейшем эти и другие схемы будут рассмотрены более детально и представлены с использованием специальной логической символики.

6. Традиционная и современная логика

История логики охватывает около двух с половиной тысячелетий. "Старше" формальной логики, пожалуй, только философия и математика.

В длинной и богатой событиями истории развития логики отчетливо выделяются два основных этапа. Первый — от древнегреческой логики до возникновения во второй половине прошлого века современной логики. Второй — с этого времени до наших дней.

На первом этапе, обычно называемом традиционной логикой, формальная логика развивалась очень медленно. Обсуждавшиеся в ней проблемы мало чем отличались от проблем, поставленных еще Аристотелем. Это дало повод немецкому философу И.Канту (1724–1804) в свое время придти к выводу, что формальная логика является завершенной наукой, не продвинувшейся со времени Аристотеля ни на один шаг.

Кант не заметил, что еще с XVII в. стали назревать предпосылки для научной революции в логике. Именно в это время получила ясное выражение идея представить доказательство как вычисление, подобное вычислению в математике.

Эта идея связана главным образом с именем немецкого философа и математика Г.Лейбница (1646–1716). По Лейбницу, вычисление суммы или разности чисел осуществляется на основе простых правил, принимающих во внимание только форму чисел, а не их смысл. Результат вычисления однозначно предопределяется этими, не допускающими разночтения правилами, и его нельзя оспорить. Лейбниц мечтал о времени, когда умозаключение будет преобразовано в вычисление. Когда это случится, споры, обычные между философами, станут так же невозможны, как невозможны они между вычислителями. Вместо спора они возьмут в руки перья и скажут: "Будем вычислять".

Идеи Лейбница не оказали, однако, заметного влияния на его современников. Энергичное развитие логики началось позже, в XIX в.

Немецкий математик и логик Г.Фреге (1848–1925) в своих работах стал применять формальную логику для исследования оснований математики. Фреге был убежден, что "арифметика есть часть логики и не должна заимствовать ни у опыта, ни у созерцания никакого обоснования". Пытаясь свести математику к логике, он реконструировал последнюю. Логическая теория Фреге — провозвестник всех нынешних теорий правильного рассуждения.

Идея сведения всей чистой математики к логике была подхвачена английским логиком и философом Б.Расселом (1872–1970). Но последующее развитие логики показало неосуществимость этой грандиозной по своему замыслу попытки. Она привела, однако, к сближению математики и логики и к широкому проникновению плодотворных методов первой во вторую.

В России в конце прошлого — начале нынешнего века, когда научная революция в логике набрала силу, ситуация была довольно сложной. И в теории, и в практике преподавания господствовала так называемая "академическая логика", избегавшая острых проблем и постоянно подменявшая науку логику невнятно изложенной методологией науки, истолкованной к тому же по заимствованным и устаревшим образцам. И тем не менее были люди, стоявшие на уровне достижений логики своего времени и внесшие в ее развитие важный вклад. Прежде всего это доктор астрономии Казанского университета, логик и математик П.С.Порецкий. Сдержанное общее отношение к математической логике, разделявшееся многими русскими математиками, во многом осложнило его творчество. Часть своих работ он вынужден был опубликовать за границей. Но его идеи оказали в конечном счете существенное влияние на развитие алгебраически трактуемой логики как в нашей стране, так и за рубежом. Порецкий первым в России начал читать лекции по современной логике, о которой он говорил, что это "по предмету своему есть логика, а по методу математика". Исследования Порецкого продолжают оказывать стимулирующее влияние на развитие алгебраических теорий логики и в наши дни.

7