В силлогизме, как и во всяком дедуктивном умозаключении, в заключении не может содержаться информация, отсутствующая в посылках. Заключение только развертывает информацию посылок, но не может привносить новую информацию, отсутствующую в них.
В обычных рассуждениях нередки силлогизмы, в которых не выражается явно одна из посылок или заключение. Такие силлогизмы называются энтимемами. Примеры энтимем: "Щедрость заслуживает похвалы, как и всякая добродетель", "Он — ученый, поэтому любопытство ему не чуждо", "Керосин — жидкость, поэтому он передает давление во все стороны равномерно" и т. п. В первом случае опущена меньшая посылка "Щедрость — это добродетель", во втором — большая посылка "Всякому ученому не чуждо любопытство", в третьем — опять-таки большая посылка "Всякая жидкость передает давление во все стороны равномерно".
Для оценки правильности рассуждения в энтимеме следует восстановить ее в полный силлогизм.
Об И. Ньютоне рассказывают, что, будучи студентом, он начал изучение геометрии, как было принято в то время, с чтения "Геометрии" Евклида. Знакомясь с формулировками теорем, он видел, что они справедливы, и не изучал доказательства. Его удивляло, что люди затрачивают столько усилий, чтобы доказать совершенно очевидное.
Позднее Ньютон изменил свое мнение о необходимости доказательств в математике и других науках и хвалил Евклида как раз за безупречность и строгость его доказательств.
Невозможно переоценить значение доказательств в нашей жизни и особенно в науке. И тем не менее доказательства встречаются не так часто, как хотелось бы. К доказательствам прибегают все, но редко кто задумывается над тем, что означает "доказать", почему доказательство "доказывает", всякое ли утверждение можно доказать или опровергнуть, все ли нужно доказывать и т. п.
Наше представление о доказательстве как особой интеллектуальной операции формируется в процессе проведения конкретных доказательств. Изучая разные области знания, мы усваиваем и относящиеся к ним доказательства. На этой основе мы постепенно составляем — чаще всего незаметно для себя — общее интуитивное представление о доказательстве как таковом, его общей структуре, не зависящей от конкретного материала, о целях и смысле доказательства и т. д.
Изучение доказательства на конкретных его образцах и интересно, и полезно. Но также необходимо знакомство с основами логической теории доказательства, которая говорит о доказательствах безотносительно к области их применения. Практические навыки доказательства и интуитивное представление о нем достаточны для многих целей, но далеко не для всех. Практика и здесь, как обычно, нуждается в теории.
Логическая теория доказательства в основе своей проста и доступна, хотя ее детализация требует специального символического языка и другой изощренной техники современной логики.
Под доказательством в логике понимается процедура установления истинности некоторого утверждения путем приведения других утверждений, истинность которых уже известна и из которых с необходимостью вытекает первое.
В доказательстве различаются тезис — утверждение, которое нужно доказать, основание (аргументы) — те положения, с помощью которых доказывается тезис, и логическая связь между аргументами и тезисом. Понятие доказательства всегда предполагает, таким образом, указание посылок, на которые опирается тезис, и тех логических правил, по которым осуществляются преобразования утверждений в ходе доказательства.
...К примеру, нужно доказать тезис "Все металлы проводят электрический ток". Подбираем в качестве аргументов утверждения, которые являются, во-первых, истинными и из которых, во-вторых, логически вытекает тезис. В качестве таких утверждений можно принять, в частности, следующие: "Все вещества, имеющие в своей кристаллической решетке свободные электроны, проводят электрический ток" и "Все металлы имеют в своей кристаллической решетке свободные электроны". Строим умозаключение:
Все вещества, имеющие в своей кристаллической решетке свободные электроны, проводят электрический ток.
Все металлы имеют в своей кристаллической решетке свободные электроны.
Все металлы проводят электрический ток.
Данное умозаключение является правильным (оно представляет собой категорический силлогизм), посылки его истинны; значит, умозаключение является доказательством исходного тезиса.
Доказательство — это правильное умозаключение с истинными посылками. Логическую основу каждого доказательства (его схему) составляет логический закон.
Доказательство — это всегда в определенном смысле принуждение.
...Философ XVII в. Т. Гоббс до сорока лет не имел представления о геометрии. Впервые в жизни прочитав формулировку теоремы Пифагора, он воскликнул: "Боже, но это невозможно!" Но затем шаг за шагом он проследил все доказательство, убедился в его правильности и смирился. Ничего другого, собственно, и не оставалось.
Мы уверены, к примеру, что важными показателями богатства нашего языка являются его индивидуальность, стилистическая гибкость, умение обо всем говорить "своими словами". В таком случае мы должны признать также, что язык обезличенный, лишенный индивидуальности, основывающийся на чужих оборотах и выражениях и потому серый, бездушный и трафаретный, не может считаться богатым и полноценным.